Trilinear Embedding Theorem for Elliptic Partial Differential Operators in Divergence Form with Complex Coefficients

Oliver Dragičević (U. of Ljubljana)

XI International Conference of the Georgian Mathematical Union

Shota Rustaveli State University

Batumi, August 27, 2021

Elliptic partial differential operators (of 2nd order)

Let $a, b, c \in \mathbb{R}$. For $u=u(x, y)$ define the operator L by

$$
-L u=a u_{x x}+2 b u_{x y}+c u_{y y} .
$$

Elliptic partial differential operators (of 2nd order)

Let $a, b, c \in \mathbb{R}$. For $u=u(x, y)$ define the operator L by

$$
-L u=a u_{x x}+2 b u_{x y}+c u_{y y} .
$$

We say that L is elliptic if

$$
A=\left[\begin{array}{ll}
a & b \\
b & c
\end{array}\right]
$$

is positive definite.

Elliptic partial differential operators (of 2nd order)

Let $a, b, c \in \mathbb{R}$. For $u=u(x, y)$ define the operator L by

$$
-L u=a u_{x x}+2 b u_{x y}+c u_{y y} .
$$

We say that L is elliptic if

$$
A=\left[\begin{array}{ll}
a & b \\
b & c
\end{array}\right]
$$

is positive definite. Example: Laplace operator $-\left(\partial_{x x}^{2}+\partial_{y y}^{2}\right)$.

Elliptic partial differential operators (of 2nd order)

Let $a, b, c \in \mathbb{R}$. For $u=u(x, y)$ define the operator L by

$$
-L u=a u_{x x}+2 b u_{x y}+c u_{y y} .
$$

We say that L is elliptic if

$$
A=\left[\begin{array}{ll}
a & b \\
b & c
\end{array}\right]
$$

is positive definite. Example: Laplace operator $-\left(\partial_{x x}^{2}+\partial_{y y}^{2}\right)$. Note:

$$
\int\langle L u, v\rangle=\int\langle A \nabla u, \nabla v\rangle .
$$

Elliptic partial differential operators (of 2nd order)

Let $a, b, c \in \mathbb{R}$. For $u=u(x, y)$ define the operator L by

$$
-L u=a u_{x x}+2 b u_{x y}+c u_{y y} .
$$

We say that L is elliptic if

$$
A=\left[\begin{array}{ll}
a & b \\
b & c
\end{array}\right]
$$

is positive definite. Example: Laplace operator $-\left(\partial_{x x}^{2}+\partial_{y y}^{2}\right)$. Note:

$$
\int\langle L u, v\rangle=\int\langle A \nabla u, \nabla v\rangle .
$$

Generalizations:

Elliptic partial differential operators (of 2nd order)

Let $a, b, c \in \mathbb{R}$. For $u=u(x, y)$ define the operator L by

$$
-L u=a u_{x x}+2 b u_{x y}+c u_{y y} .
$$

We say that L is elliptic if

$$
A=\left[\begin{array}{ll}
a & b \\
b & c
\end{array}\right]
$$

is positive definite. Example: Laplace operator $-\left(\partial_{x x}^{2}+\partial_{y y}^{2}\right)$. Note:

$$
\int\langle L u, v\rangle=\int\langle A \nabla u, \nabla v\rangle .
$$

Generalizations:

- complex A;

Elliptic partial differential operators (of 2nd order)

Let $a, b, c \in \mathbb{R}$. For $u=u(x, y)$ define the operator L by

$$
-L u=a u_{x x}+2 b u_{x y}+c u_{y y} .
$$

We say that L is elliptic if

$$
A=\left[\begin{array}{ll}
a & b \\
b & c
\end{array}\right]
$$

is positive definite. Example: Laplace operator $-\left(\partial_{x x}^{2}+\partial_{y y}^{2}\right)$. Note:

$$
\int\langle L u, v\rangle=\int\langle A \nabla u, \nabla v\rangle
$$

Generalizations:

- complex A;
- nonconstant A;

Elliptic partial differential operators (of 2nd order)

Let $a, b, c \in \mathbb{R}$. For $u=u(x, y)$ define the operator L by

$$
-L u=a u_{x x}+2 b u_{x y}+c u_{y y} .
$$

We say that L is elliptic if

$$
A=\left[\begin{array}{ll}
a & b \\
b & c
\end{array}\right]
$$

is positive definite. Example: Laplace operator $-\left(\partial_{x x}^{2}+\partial_{y y}^{2}\right)$. Note:

$$
\int\langle L u, v\rangle=\int\langle A \nabla u, \nabla v\rangle .
$$

Generalizations:

- complex A;
- nonconstant A;
- higher dimensions.

p-ellipticity (Carbonaro-D. 2015)

Let $\Omega \subset \mathbb{R}^{n}$ open, $A: \Omega \rightarrow \mathbb{C}^{n, n}$ bounded.

p-ellipticity (Carbonaro-D. 2015)

Let $\Omega \subset \mathbb{R}^{n}$ open, $A: \Omega \rightarrow \mathbb{C}^{n, n}$ bounded. Set $\Lambda(A):=\|A\|_{\infty}$ and

p-ellipticity (Carbonaro-D. 2015)

Let $\Omega \subset \mathbb{R}^{n}$ open, $A: \Omega \rightarrow \mathbb{C}^{n, n}$ bounded. Set $\Lambda(A):=\|A\|_{\infty}$ and

Classical ellipticity:

$$
\lambda(A)>0
$$

p-ellipticity (Carbonaro-D. 2015)

Let $\Omega \subset \mathbb{R}^{n}$ open, $A: \Omega \rightarrow \mathbb{C}^{n, n}$ bounded. Set $\Lambda(A):=\|A\|_{\infty}$ and

$$
\lambda(A)=\underset{x \in \Omega}{\operatorname{essinf}} \min _{|\xi|=1} \Re\langle A(x) \xi, \xi\rangle_{\mathbb{C}^{n}}
$$

Classical ellipticity:

$$
\lambda(A)>0
$$

For $p \in[1, \infty]$ set

p-ellipticity (Carbonaro-D. 2015)

Let $\Omega \subset \mathbb{R}^{n}$ open, $A: \Omega \rightarrow \mathbb{C}^{n, n}$ bounded. Set $\Lambda(A):=\|A\|_{\infty}$ and

Classical ellipticity:

$$
\lambda(A)>0
$$

For $p \in[1, \infty]$ set
p-ellipticity:

$$
\Delta_{p}(A)>0
$$

Evans: Partial Differential Equations (AMS 2010), p. 327

"[...] calculations are often tehnically difficult but eventually yield extremely powerful and useful assertions concerning the smoothness of weak solutions. As always, the heart of each computation is the invocation of ellipticity: the point is to derive analytic estimates from structural, algebraic assumption of ellipticity."
(emphasis by L.E.)

Evans: Partial Differential Equations (AMS 2010), p. 327

"[...] calculations are often tehnically difficult but eventually yield extremely powerful and useful assertions concerning the smoothness of weak solutions. As always, the heart of each computation is the invocation of ellipticity: the point is to derive analytic estimates from structural, algebraic assumption of ellipticity."
(emphasis by L.E.)
p-ellipticity: may be of interest for the L^{p} theory of elliptic PDE.

Examples

(i) convexity of power functions (Bellman functions),
(ii) dimension-free bilinear embeddings,
(iii) L^{p}-contractivity of semigroups,
(iv) holomorphic functional calculus,
(v) square function estimates,
(vi) trilinear embeddings and Kato-Ponce inequalities (with Kovač and Škreb).
(vii) regularity theory of elliptic PDE with complex coefficients (Dindoš-Pipher),

The class of p-elliptic matrices

$$
\mathcal{A}_{p}=\mathcal{A}_{p}(\Omega):=\{\text { all } p \text {-elliptic matrices on } \Omega\} .
$$

The class of p-elliptic matrices

$$
\mathcal{A}_{p}=\mathcal{A}_{p}(\Omega):=\{\text { all } p \text {-elliptic matrices on } \Omega\}
$$

For $2 \leqslant p \leqslant r$ we have

$$
\{\text { elliptic matrices on } \Omega\}=\mathcal{A}_{2}
$$

The class of p-elliptic matrices

$$
\mathcal{A}_{p}=\mathcal{A}_{p}(\Omega):=\{\text { all } p \text {-elliptic matrices on } \Omega\}
$$

For $2 \leqslant p \leqslant r$ we have

$$
\{\text { elliptic matrices on } \Omega\}=\mathcal{A}_{2}
$$

\mathcal{A}_{p} \cup
\mathcal{A}_{r}

The class of p-elliptic matrices

$$
\mathcal{A}_{p}=\mathcal{A}_{p}(\Omega):=\{\text { all } p \text {-elliptic matrices on } \Omega\}
$$

For $2 \leqslant p \leqslant r$ we have

$$
\{\text { elliptic matrices on } \Omega\}=\mathcal{A}_{2}
$$

$$
\bigcap_{s \in[2, \infty)} \mathcal{A}_{s}
$$

The class of p-elliptic matrices

$$
\mathcal{A}_{p}=\mathcal{A}_{p}(\Omega):=\{\text { all } p \text {-elliptic matrices on } \Omega\}
$$

For $2 \leqslant p \leqslant r$ we have

$$
\{\text { elliptic matrices on } \Omega\}=\mathcal{A}_{2}
$$

$$
\cup
$$

$$
\mathcal{A}_{p}
$$

$$
\cup
$$

$$
\mathcal{A}_{r}
$$

$\{$ real elliptic matrices on $\Omega\}=\bigcap \mathcal{A}_{s}$

$$
s \in[2, \infty)
$$

The class of p-elliptic matrices

Obvious:

$$
\Delta_{p}(A)=\Delta_{q}(A) \quad \text { if } 1 / p+1 / q=1
$$

The class of p-elliptic matrices

Obvious:

$$
\Delta_{p}(A)=\Delta_{q}(A) \quad \text { if } 1 / p+1 / q=1
$$

For any $A \in \mathcal{A}(\Omega)$ set

$$
\mu(A):=\operatorname{ess} \inf \Re \frac{\langle A(x) \xi, \xi\rangle}{|\langle A(x) \xi, \bar{\xi}\rangle|}
$$

ess inf over all $x \in \mathbb{R}^{n}$ and all $\xi \in \mathbb{C}^{n}$ for which $\langle A(x) \xi, \bar{\xi}\rangle \neq 0$.
The key assumption $\Delta_{p}(A)>0$ is equivalent to

$$
|1-2 / p|<\mu(A)
$$

The class of p-elliptic matrices

Obvious:

$$
\Delta_{p}(A)=\Delta_{q}(A) \quad \text { if } 1 / p+1 / q=1
$$

For any $A \in \mathcal{A}(\Omega)$ set

$$
\mu(A):=\operatorname{ess} \inf \Re \frac{\langle A(x) \xi, \xi\rangle}{|\langle A(x) \xi, \bar{\xi}\rangle|}
$$

ess inf over all $x \in \mathbb{R}^{n}$ and all $\xi \in \mathbb{C}^{n}$ for which $\langle A(x) \xi, \bar{\xi}\rangle \neq 0$. The key assumption $\Delta_{p}(A)>0$ is equivalent to

$$
|1-2 / p|<\mu(A)
$$

Furthermore: $\Delta_{p}(A)$ is Lipschitz continuous in both p and A.

The Dindoš-Pipher condition (2016)

For some $\varepsilon=\varepsilon(A, p)>0$ and almost all $x \in \Omega$,

$$
\begin{aligned}
\langle\Re A(x) \lambda, \lambda\rangle_{\mathbb{R}^{d}} & +\langle\Re A(x) \eta, \eta\rangle_{\mathbb{R}^{d}} \\
+ & \left\langle\left(\sqrt{p^{\prime} / p} \Im A(x)-\sqrt{p / p^{\prime}} \Im A(x)^{T}\right) \lambda, \eta\right\rangle_{\mathbb{R}^{d}} \\
& \geqslant \varepsilon\left(|\lambda|^{2}+|\eta|^{2}\right)
\end{aligned}
$$

for all $\lambda, \eta \in \mathbb{R}^{d}$. Here $p^{\prime}=p /(p-1)$ is the conjugate exponent of p.

The Dindoš-Pipher condition (2016)

For some $\varepsilon=\varepsilon(A, p)>0$ and almost all $x \in \Omega$,

$$
\begin{aligned}
\langle\Re A(x) \lambda, \lambda\rangle_{\mathbb{R}^{d}} & +\langle\Re A(x) \eta, \eta\rangle_{\mathbb{R}^{d}} \\
+ & \left\langle\left(\sqrt{p^{\prime} / p} \Im A(x)-\sqrt{p / p^{\prime}} \Im A(x)^{T}\right) \lambda, \eta\right\rangle_{\mathbb{R}^{d}} \\
& \geqslant \varepsilon\left(|\lambda|^{2}+|\eta|^{2}\right)
\end{aligned}
$$

for all $\lambda, \eta \in \mathbb{R}^{d}$. Here $p^{\prime}=p /(p-1)$ is the conjugate exponent of p.

It turned out:

$$
\text { DP condition } \Leftrightarrow \Delta_{p}(A)>0
$$

The Dindoš-Pipher condition (2016)

For some $\varepsilon=\varepsilon(A, p)>0$ and almost all $x \in \Omega$,

$$
\begin{aligned}
\langle\Re A(x) \lambda, \lambda\rangle_{\mathbb{R}^{d}} & +\langle\Re A(x) \eta, \eta\rangle_{\mathbb{R}^{d}} \\
+ & \left\langle\left(\sqrt{p^{\prime} / p} \Im A(x)-\sqrt{p / p^{\prime}} \Im A(x)^{T}\right) \lambda, \eta\right\rangle_{\mathbb{R}^{d}} \\
& \geqslant \varepsilon\left(|\lambda|^{2}+|\eta|^{2}\right)
\end{aligned}
$$

for all $\lambda, \eta \in \mathbb{R}^{d}$. Here $p^{\prime}=p /(p-1)$ is the conjugate exponent of p.

It turned out:

$$
\text { DP condition } \Leftrightarrow \Delta_{p}(A)>0
$$

The Dindoš-Pipher condition was derived as a strengthening of a condition by Cialdea-Maz'ya (2005).
p-ellipticity comes from studying (generalized) convexity properties of power functions of a single complex variable.

Study of power functions was motivated by our attempts to understand convexity of a particular Bellman function due to Nazarov and Treil, which comprises tensor products of power functions.

This was in turn pursued as a part of our (D.-Volberg 2011, Carbonaro-D. 2015) efforts to prove bilinear embedding theorem for arbitrary complex accretive matrices A.

Bilinear embedding theorem for divergence-form operators

Define

$$
L_{A} u:=-\operatorname{div}(A \nabla u) .
$$

Operator semigroups: $\varphi(t)=e^{-t \mathcal{L}} f$ solves $\varphi^{\prime}+\mathcal{L} \varphi=0, \varphi(0)=f$.

Bilinear embedding theorem for divergence-form operators

Define

$$
L_{A} u:=-\operatorname{div}(A \nabla u) .
$$

Operator semigroups: $\varphi(t)=e^{-t \mathcal{L}} f$ solves $\varphi^{\prime}+\mathcal{L} \varphi=0, \varphi(0)=f$.

Theorem (Carbonaro-D. 2015)

For $p>1, q=p /(p-1), A, B \in \mathcal{A}_{p}\left(\mathbb{R}^{n}\right), f, g \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$ we have

$$
\int_{0}^{\infty} \int_{\mathbb{R}^{n}}\left|\nabla_{x} e^{-t L_{A}} f(x)\right|\left|\nabla_{x} e^{-t L_{B}} g(x)\right| d x d t \leqslant \frac{20}{\Delta_{p}} \cdot \frac{\Lambda}{\lambda}\|f\|_{p}\|g\|_{q}
$$

$$
\text { where } \Delta_{p}=\min \left\{\Delta_{p}(A), \Delta_{p}(B)\right\} \text { in } \Lambda=\max \{\Lambda(A), \Lambda(B)\}
$$

Bilinear embedding theorem for divergence-form operators

Define

$$
L_{A} u:=-\operatorname{div}(A \nabla u) .
$$

Operator semigroups: $\varphi(t)=e^{-t \mathcal{L}} f$ solves $\varphi^{\prime}+\mathcal{L} \varphi=0, \varphi(0)=f$.

Theorem (Carbonaro-D. 2015)

For $p>1, q=p /(p-1), A, B \in \mathcal{A}_{p}\left(\mathbb{R}^{n}\right), f, g \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$ we have

$$
\int_{0}^{\infty} \int_{\mathbb{R}^{n}}\left|\nabla_{x} e^{-t L_{A}} f(x)\right|\left|\nabla_{x} e^{-t L_{B}} g(x)\right| d x d t \leqslant \frac{20}{\Delta_{p}} \cdot \frac{\Lambda}{\lambda}\|f\|_{p}\|g\|_{q}
$$

$$
\text { where } \Delta_{p}=\min \left\{\Delta_{p}(A), \Delta_{p}(B)\right\} \text { in } \Lambda=\max \{\Lambda(A), \Lambda(B)\}
$$

Motivation: square function estimates (Auscher 2004).

Bilinear embedding theorem for divergence-form operators

Define

$$
L_{A} u:=-\operatorname{div}(A \nabla u) .
$$

Operator semigroups: $\varphi(t)=e^{-t \mathcal{L}} f$ solves $\varphi^{\prime}+\mathcal{L} \varphi=0, \varphi(0)=f$.

Theorem (Carbonaro-D. 2015)

For $p>1, q=p /(p-1), A, B \in \mathcal{A}_{p}\left(\mathbb{R}^{n}\right), f, g \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$ we have $\int_{0}^{\infty} \int_{\mathbb{R}^{n}}\left|\nabla_{x} e^{-t L_{A}} f(x)\right|\left|\nabla_{x} e^{-t L_{B}} g(x)\right| d x d t \leqslant \frac{20}{\Delta_{p}} \cdot \frac{\Lambda}{\lambda}\|f\|_{p}\|g\|_{q}$, where $\Delta_{p}=\min \left\{\Delta_{p}(A), \Delta_{p}(B)\right\}$ in $\Lambda=\max \{\Lambda(A), \Lambda(B)\}$.

Motivation: square function estimates (Auscher 2004).
D.-Volberg (2007): $A=B$ real and $p \in(1, \infty)$.

Bilinear embedding theorem for divergence-form operators

Define

$$
L_{A} u:=-\operatorname{div}(A \nabla u) .
$$

Operator semigroups: $\varphi(t)=e^{-t \mathcal{L}} f$ solves $\varphi^{\prime}+\mathcal{L} \varphi=0, \varphi(0)=f$.

Theorem (Carbonaro-D. 2015)

For $p>1, q=p /(p-1), A, B \in \mathcal{A}_{p}\left(\mathbb{R}^{n}\right), f, g \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$ we have

$$
\int_{0}^{\infty} \int_{\mathbb{R}^{n}}\left|\nabla_{x} e^{-t L_{A}} f(x)\right|\left|\nabla_{x} e^{-t L_{B}} g(x)\right| d x d t \leqslant \frac{20}{\Delta_{p}} \cdot \frac{\Lambda}{\lambda}\|f\|_{p}\|g\|_{q}
$$

where $\Delta_{p}=\min \left\{\Delta_{p}(A), \Delta_{p}(B)\right\}$ in $\Lambda=\max \{\Lambda(A), \Lambda(B)\}$.
Motivation: square function estimates (Auscher 2004).
D.-Volberg (2007): $A=B$ real and $p \in(1, \infty)$.

The condition $\Delta_{p}>0$ is sharp (L^{p} contractivity of the semigroup).

Bilinear embeddings and heat flows - main developments

Ahlfors - Beurling operator (Petermichl - Volberg 2002
\& Nazarov - Volberg 2003)
$A=B$ real
(D. - Volberg 2008)
$A, B=e^{i \phi} I$
(Carbonaro - D. 2012)
A, B arbitrary complex
(Carbonaro - D. 2016)
A, B, Ω arbitrary
(Carbonaro - D. 2018)

The heat flow method. Proof of the bilinear embedding.

Let $Q: \mathbb{C}^{2} \rightarrow \mathbb{R}$. Define $\mathcal{E}:[0, \infty) \rightarrow \mathbb{R}_{+}$by

$$
\mathcal{E}(t)=\int_{\mathbb{R}^{n}} Q\left(e^{-t L_{A}} f, e^{-t L_{B}} g\right)
$$

The heat flow method. Proof of the bilinear embedding.

Let $Q: \mathbb{C}^{2} \rightarrow \mathbb{R}$. Define $\mathcal{E}:[0, \infty) \rightarrow \mathbb{R}_{+}$by

$$
\mathcal{E}(t)=\int_{\mathbb{R}^{n}} Q\left(e^{-t L_{A}} f, e^{-t L_{B}} g\right)
$$

Estimate

$$
-\int_{0}^{\infty} \mathcal{E}^{\prime}(t) d t
$$

from below and above.

The heat flow method. Proof of the bilinear embedding.

Let $Q: \mathbb{C}^{2} \rightarrow \mathbb{R}$. Define $\mathcal{E}:[0, \infty) \rightarrow \mathbb{R}_{+}$by

$$
\mathcal{E}(t)=\int_{\mathbb{R}^{n}} Q\left(e^{-t L_{A}} f, e^{-t L_{B}} g\right)
$$

Estimate

$$
-\int_{0}^{\infty} \mathcal{E}^{\prime}(t) d t
$$

from below and above.
Upper estimate
Suppose that $0 \leqslant Q(\zeta, \eta) \leqslant \mathfrak{b}_{0}\left(|\zeta|^{p}+|\eta|^{q}\right)$ for $\zeta, \eta \in \mathbb{C}$. Then

$$
-\int_{0}^{\infty} \mathcal{E}^{\prime}(t) d t \leqslant \mathcal{E}(0) \leqslant \mathfrak{b}_{0}\left(\|f\|_{p}^{p}+\|g\|_{q}^{q}\right)
$$

The heat flow method. Proof of the bilinear embedding.

Lower estimate

Integration by parts gives, for $h_{t}=\left(e^{-t L_{A}} f, e^{-t L_{B}} g\right)$,

$$
-\mathcal{E}^{\prime}(t)=\int_{\mathbb{R}^{n}} H_{Q}^{(A, B)}\left[h_{t} ; \nabla h_{t}\right]
$$

Here, roughly speaking, the generalized Hessian form $H_{Q}^{(A, B)}$ is

$$
H_{Q}^{(A, B)}[v ; \omega]=\Re\left\langle d^{2} Q(v) \omega,\left[\begin{array}{ll}
A & \\
& B
\end{array}\right] \omega\right\rangle_{\mathbb{C}^{n} \times \mathbb{C}^{n}}
$$

The heat flow method. Proof of the bilinear embedding.

Lower estimate

Integration by parts gives, for $h_{t}=\left(e^{-t L_{A}} f, e^{-t L_{B}} g\right)$,

$$
-\mathcal{E}^{\prime}(t)=\int_{\mathbb{R}^{n}} H_{Q}^{(A, B)}\left[h_{t} ; \nabla h_{t}\right]
$$

Here, roughly speaking, the generalized Hessian form $H_{Q}^{(A, B)}$ is

$$
H_{Q}^{(A, B)}[v ; \omega]=\Re\left\langle d^{2} Q(v) \omega,\left[\begin{array}{ll}
A & \\
& B
\end{array}\right] \omega\right\rangle_{\mathbb{C}^{n} \times \mathbb{C}^{n}}
$$

Similarly: for $F: \mathbb{C} \rightarrow \mathbb{R}$ denote

$$
H_{F}^{A}[\zeta ; \xi]=\Re\left\langle d^{2} F(\zeta) \xi, A \xi\right\rangle_{\mathbb{C}^{n}}
$$

The heat flow method. Proof of the bilinear embedding.

Suppose additionally that

$$
H_{Q}^{(A, B)}[v ;(\alpha, \beta)] \geqslant \mathfrak{a}_{0}|\alpha||\beta|
$$

for $v \in \mathbb{C}^{2}, \alpha, \beta \in \mathbb{R}^{2 n}$. Then

$$
\mathfrak{a}_{0} \int_{0}^{\infty}\langle | \nabla e^{-t L_{A}}\left|,\left|\nabla e^{-t L_{B}} g\right|\right\rangle_{L^{2}\left(\mathbb{R}^{n}\right)} d t \leqslant-\int_{0}^{\infty} \mathcal{E}^{\prime}(t) d t
$$

The heat flow method. Proof of the bilinear embedding.

Suppose additionally that

$$
H_{Q}^{(A, B)}[v ;(\alpha, \beta)] \geqslant \mathfrak{a}_{0}|\alpha||\beta|
$$

for $v \in \mathbb{C}^{2}, \alpha, \beta \in \mathbb{R}^{2 n}$. Then

$$
\mathfrak{a}_{0} \int_{0}^{\infty}\langle | \nabla e^{-t L_{A}}\left|,\left|\nabla e^{-t L_{B}} g\right|\right\rangle_{L^{2}\left(\mathbb{R}^{n}\right)} d t \leqslant-\int_{0}^{\infty} \mathcal{E}^{\prime}(t) d t
$$

We (almost) get the bilinear embedding:

$$
\mathfrak{a}_{0} \int_{0}^{\infty}\langle | \nabla e^{-t L_{A}} f\left|,\left|\nabla e^{-t L_{B}} g\right|\right\rangle_{L^{2}\left(\mathbb{R}^{n}\right)} d t \leqslant \mathfrak{b}_{0}\left(\|f\|_{p}^{p}+\|g\|_{q}^{q}\right)
$$

The heat flow method. Proof of the bilinear embedding.

Suppose additionally that

$$
H_{Q}^{(A, B)}[v ;(\alpha, \beta)] \geqslant \mathfrak{a}_{0}|\alpha||\beta|
$$

for $v \in \mathbb{C}^{2}, \alpha, \beta \in \mathbb{R}^{2 n}$. Then

$$
\mathfrak{a}_{0} \int_{0}^{\infty}\langle | \nabla e^{-t L_{A}}\left|,\left|\nabla e^{-t L_{B}} g\right|\right\rangle_{L^{2}\left(\mathbb{R}^{n}\right)} d t \leqslant-\int_{0}^{\infty} \mathcal{E}^{\prime}(t) d t
$$

We (almost) get the bilinear embedding:

$$
\mathfrak{a}_{0} \int_{0}^{\infty}\langle | \nabla e^{-t L_{A}} f\left|,\left|\nabla e^{-t L_{B}} g\right|\right\rangle_{L^{2}\left(\mathbb{R}^{n}\right)} d t \leqslant \mathfrak{b}_{0}\left(\|f\|_{p}^{p}+\|g\|_{q}^{q}\right)
$$

Replace $f \rightarrow \sigma f, g \rightarrow \sigma^{-1} g$ and maximize in $\sigma>0$.

The heat flow method - SUMMARY

Bilinear embedding reduces to finding a function $Q: \mathbb{C}^{2} \rightarrow \mathbb{R}$ of order C^{2} such that:
(i) the corresponding flow is regular;
(ii) for all $(\zeta, \eta) \in \mathbb{C}^{2}$:

$$
0 \leqslant Q(\zeta, \eta) \lesssim|\zeta|^{p}+|\eta|^{q}
$$

(iii) for any $v \in \mathbb{C}^{2}$ and $\alpha, \beta \in \mathbb{R}^{2 n}$:

$$
H_{Q}^{(A, B)}[v ;(\alpha, \beta)] \gtrsim|\alpha||\beta| .
$$

The heat flow method - SUMMARY

Bilinear embedding reduces to finding a function $Q: \mathbb{C}^{2} \rightarrow \mathbb{R}$ of order C^{2} such that:
(i) the corresponding flow is regular;
(ii) for all $(\zeta, \eta) \in \mathbb{C}^{2}$:

$$
0 \leqslant Q(\zeta, \eta) \lesssim|\zeta|^{p}+|\eta|^{q}
$$

(iii) for any $v \in \mathbb{C}^{2}$ and $\alpha, \beta \in \mathbb{R}^{2 n}$:

$$
H_{Q}^{(A, B)}[v ;(\alpha, \beta)] \gtrsim|\alpha||\beta| .
$$

When $H_{Q}^{(A, B)}$ is the usual Hessian matrix of Q (the case $A=B \equiv I$), a suitable function Q is already known to exist (\rightarrow a natural starting point).

The Nazarov-Treil function

Bellman function method: Nazarov-Treil-Volberg 1994

The Nazarov-Treil function

Bellman function method: Nazarov-Treil-Volberg 1994
An early concrete example:
Nazarov-Treil (1995) + simplification D.-Volberg (2008)
Let $p \geqslant 2,1 / p+1 / q=1$ and $\delta>0$.
Define the Bellman function $Q=Q_{p, \delta}: \mathbb{C} \times \mathbb{C} \longrightarrow \mathbb{R}_{+}$as

$$
Q(\zeta, \eta)=|\zeta|^{p}+|\eta|^{q}+\delta \begin{cases}|\zeta|^{2}|\eta|^{2-q} & ;|\zeta|^{p} \leqslant|\eta|^{q} \\ \frac{2}{p}|\zeta|^{p}+\left(\frac{2}{q}-1\right)|\eta|^{q} & ;|\zeta|^{p} \geqslant|\eta|^{q}\end{cases}
$$

The Nazarov-Treil function

Bellman function method: Nazarov-Treil-Volberg 1994
An early concrete example:
Nazarov-Treil (1995) + simplification D.-Volberg (2008)
Let $p \geqslant 2,1 / p+1 / q=1$ and $\delta>0$.
Define the Bellman function $Q=Q_{p, \delta}: \mathbb{C} \times \mathbb{C} \longrightarrow \mathbb{R}_{+}$as

$$
Q(\zeta, \eta)=|\zeta|^{p}+|\eta|^{q}+\delta \begin{cases}|\zeta|^{2}|\eta|^{2-q} & ;|\zeta|^{p} \leqslant|\eta|^{q} \\ \frac{2}{p}|\zeta|^{p}+\left(\frac{2}{q}-1\right)|\eta|^{q} & ;|\zeta|^{p} \geqslant|\eta|^{q}\end{cases}
$$

Structural feature: tensor products of power functions.

Origin of p-ellipticity

In the good region $\left\{|\zeta|^{p} \geqslant|\eta|^{q}\right\}$ we have

$$
Q=c_{1}|\zeta|^{p}+c_{2}|\eta|^{q} .
$$

Origin of p-ellipticity

In the good region $\left\{|\zeta|^{p} \geqslant|\eta|^{q}\right\}$ we have

$$
Q=c_{1}|\zeta|^{p}+c_{2}|\eta|^{q}
$$

Hence

$$
(A \oplus B)^{T} d^{2} Q=\left[\begin{array}{cc}
c_{1} A^{T} d^{2}|\zeta|^{p} & 0 \\
0 & c_{2} B^{T} d^{2}|\eta|^{q}
\end{array}\right]
$$

Origin of p-ellipticity

In the good region $\left\{|\zeta|^{p} \geqslant|\eta|^{q}\right\}$ we have

$$
Q=c_{1}|\zeta|^{p}+c_{2}|\eta|^{q}
$$

Hence

$$
(A \oplus B)^{T} d^{2} Q=\left[\begin{array}{cc}
c_{1} A^{T} d^{2}|\zeta|^{p} & 0 \\
0 & c_{2} B^{T} d^{2}|\eta|^{q}
\end{array}\right]
$$

Thus the positivity of $A^{T} d^{2}|\zeta|^{p}$ and $B^{T} d^{2}|\eta|^{q}$ is necessary for the quantitative positivity of $(A \oplus B)^{T} d^{2} Q$.

Origin of p-ellipticity

In the good region $\left\{|\zeta|^{p} \geqslant|\eta|^{q}\right\}$ we have

$$
Q=c_{1}|\zeta|^{p}+c_{2}|\eta|^{q} .
$$

Hence

$$
(A \oplus B)^{T} d^{2} Q=\left[\begin{array}{cc}
c_{1} A^{T} d^{2}|\zeta|^{p} & 0 \\
0 & c_{2} B^{T} d^{2}|\eta|^{q}
\end{array}\right]
$$

Thus the positivity of $A^{T} d^{2}|\zeta|^{p}$ and $B^{T} d^{2}|\eta|^{q}$ is necessary for the quantitative positivity of $(A \oplus B)^{T} d^{2} Q$.

Idea: could it also be sufficient?

Origin of p-ellipticity

In the good region $\left\{|\zeta|^{p} \geqslant|\eta|^{q}\right\}$ we have

$$
Q=c_{1}|\zeta|^{p}+c_{2}|\eta|^{q} .
$$

Hence

$$
(A \oplus B)^{T} d^{2} Q=\left[\begin{array}{cc}
c_{1} A^{T} d^{2}|\zeta|^{p} & 0 \\
0 & c_{2} B^{T} d^{2}|\eta|^{q}
\end{array}\right]
$$

Thus the positivity of $A^{T} d^{2}|\zeta|^{p}$ and $B^{T} d^{2}|\eta|^{q}$ is necessary for the quantitative positivity of $(A \oplus B)^{T} d^{2} Q$.

Idea: could it also be sufficient?
Problem: in the bad region $\left\{|\zeta|^{p} \leqslant|\eta|^{q}\right\}$ we have

$$
Q=|\zeta|^{p}+|\eta|^{q}+c_{3}|\zeta|^{2}|\eta|^{2-q} .
$$

More complicated Hessian of Q.

Original definition of p-ellipticity

Power functions
For $r \geqslant 0$ define $F_{r}(\zeta)=|\zeta|^{r}, \zeta \in \mathbb{C}$.

Original definition of p-ellipticity

Power functions

For $r \geqslant 0$ define $F_{r}(\zeta)=|\zeta|^{r}, \zeta \in \mathbb{C}$.
Definition (Carbonaro-D. 2015)

$$
\Delta_{p}(A)=\frac{2}{p^{2}} \operatorname{ess} \inf _{x \in \Omega} \min _{|\xi|=1} \min _{|\zeta|=1} H_{F_{p}}^{A(x)}[\zeta ; \xi] .
$$

Original definition of p-ellipticity

Power functions

For $r \geqslant 0$ define $F_{r}(\zeta)=|\zeta|^{r}, \zeta \in \mathbb{C}$.
Definition (Carbonaro-D. 2015)

$$
\Delta_{p}(A)=\frac{2}{p^{2}} \operatorname{ess} \inf _{x \in \Omega} \min _{|\xi|=1} \min _{|\zeta|=1} H_{F_{p}}^{A(x)}[\zeta ; \xi] .
$$

Recall:

$$
\Delta_{p}(A)=\underset{x \in \Omega}{\operatorname{essinf}} \min _{|\xi|=1} \Re\langle A(x) \xi, \xi+| 1-2 / p|\bar{\xi}\rangle_{\mathbb{C}^{n}}
$$

Original definition of p-ellipticity

Power functions

For $r \geqslant 0$ define $F_{r}(\zeta)=|\zeta|^{r}, \zeta \in \mathbb{C}$.

Definition (Carbonaro-D. 2015)

$$
\Delta_{p}(A)=\frac{2}{p^{2}} \operatorname{ess} \inf _{x \in \Omega} \min _{|\xi|=1} \min _{|\zeta|=1} H_{F_{p}}^{A(x)}[\zeta ; \xi] .
$$

Recall:

$$
\Delta_{p}(A)=\underset{x \in \Omega}{\operatorname{essinf}} \min _{|\xi|=1} \Re\langle A(x) \xi, \xi+| 1-2 / p|\bar{\xi}\rangle_{\mathbb{C}^{n}}
$$

Equivalence of the above?

Original definition of p-ellipticity

Power functions

For $r \geqslant 0$ define $F_{r}(\zeta)=|\zeta|^{r}, \zeta \in \mathbb{C}$.

Definition (Carbonaro-D. 2015)

$$
\Delta_{p}(A)=\frac{2}{p^{2}} \operatorname{ess} \inf _{x \in \Omega} \min _{|\xi|=1} \min _{|\zeta|=1} H_{F_{p}}^{A(x)}[\zeta ; \xi] .
$$

Recall:

$$
\Delta_{p}(A)=\underset{x \in \Omega}{\operatorname{ess} \inf _{|\xi|=1}} \min _{|\xi|} \Re\langle A(x) \xi, \xi+| 1-2 / p|\bar{\xi}\rangle_{\mathbb{C}^{n}}
$$

Equivalence of the above?
Recall: $\Delta_{p}(A)$ is a sesquilinear form generated by A and the Hessian matrix of the power function $F_{p}(\zeta)=|\zeta|^{p}$

Hessian of the power function $F_{p}\left(x_{1}, x_{2}\right)=\left(x_{1}^{2}+x_{2}^{2}\right)^{p / 2}$

How to calculate the 2×2 Hessian matrix of F_{p} ?

Hessian of the power function $F_{p}\left(x_{1}, x_{2}\right)=\left(x_{1}^{2}+x_{2}^{2}\right)^{p / 2}$

How to calculate the 2×2 Hessian matrix of F_{p} ?

For $\varsigma \in \mathbb{C}^{n}$ set $\mathcal{J}_{p} \varsigma=\varsigma+(1-2 / p) \bar{\varsigma}$.

Theorem

For any $\zeta \in \mathbb{C}$ and $\xi \in \mathbb{C}^{n}$ we have

$$
d^{2} F_{p}(\zeta) \xi=\frac{p^{2}}{2}|\zeta|^{p-2}(\operatorname{sign} \zeta) \mathcal{J}_{p}(\operatorname{sign} \bar{\zeta} \cdot \xi) .
$$

Theorem

For any $\zeta \in \mathbb{C}$ and $\xi \in \mathbb{C}^{n}$ we have

$$
d^{2} F_{p}(\zeta) \xi=\frac{p^{2}}{2}|\zeta|^{p-2}(\operatorname{sign} \zeta) \mathcal{J}_{p}(\operatorname{sign} \bar{\zeta} \cdot \xi) .
$$

Corollary

$$
\left\langle A \xi, d^{2} F_{p}(\zeta) \xi\right\rangle=
$$

Theorem

For any $\zeta \in \mathbb{C}$ and $\xi \in \mathbb{C}^{n}$ we have

$$
d^{2} F_{p}(\zeta) \xi=\frac{p^{2}}{2}|\zeta|^{p-2}(\operatorname{sign} \zeta) \mathcal{J}_{p}(\operatorname{sign} \bar{\zeta} \cdot \xi) .
$$

Corollary

$$
\left\langle A \xi, d^{2} F_{p}(\zeta) \xi\right\rangle=\frac{p^{2}}{2}|\zeta|^{p-2}\left\langle A(\operatorname{sign} \bar{\zeta} \cdot \xi), \mathcal{J}_{p}(\operatorname{sign} \bar{\zeta} \cdot \xi)\right\rangle .
$$

Theorem

For any $\zeta \in \mathbb{C}$ and $\xi \in \mathbb{C}^{n}$ we have

$$
d^{2} F_{p}(\zeta) \xi=\frac{p^{2}}{2}|\zeta|^{p-2}(\operatorname{sign} \zeta) \mathcal{J}_{p}(\operatorname{sign} \bar{\zeta} \cdot \xi)
$$

Corollary

$$
\left\langle A \xi, d^{2} F_{p}(\zeta) \xi\right\rangle=\frac{p^{2}}{2}|\zeta|^{p-2}\left\langle A(\operatorname{sign} \bar{\zeta} \cdot \xi), \mathcal{J}_{p}(\operatorname{sign} \bar{\zeta} \cdot \xi)\right\rangle .
$$

Corollary

For any $A \in \mathbb{C}^{n, n}$,

$$
\Delta_{p}(A)=\frac{2}{p^{2}} \min _{|\zeta|=1} \min _{|\zeta|=1} \Re\left\langle A \xi, d^{2} F_{p}(\zeta) \xi\right\rangle=
$$

Theorem

For any $\zeta \in \mathbb{C}$ and $\xi \in \mathbb{C}^{n}$ we have

$$
d^{2} F_{p}(\zeta) \xi=\frac{p^{2}}{2}|\zeta|^{p-2}(\operatorname{sign} \zeta) \mathcal{J}_{p}(\operatorname{sign} \bar{\zeta} \cdot \xi)
$$

Corollary

$$
\left\langle A \xi, d^{2} F_{p}(\zeta) \xi\right\rangle=\frac{p^{2}}{2}|\zeta|^{p-2}\left\langle A(\operatorname{sign} \bar{\zeta} \cdot \xi), \mathcal{J}_{p}(\operatorname{sign} \bar{\zeta} \cdot \xi)\right\rangle
$$

Corollary

For any $A \in \mathbb{C}^{n, n}$,

$$
\Delta_{p}(A)=\frac{2}{p^{2}} \min _{|\xi|=1} \min _{|\zeta|=1} \Re\left\langle A \xi, d^{2} F_{p}(\zeta) \xi\right\rangle=\min _{|\sigma|=1} \Re\left\langle A \sigma, \mathcal{J}_{p} \sigma\right\rangle .
$$

Generalized convexity of F_{p} implies gen. conv. of Q

Theorem

If $p \geqslant 2$ and $A, B \in \mathcal{A}_{p}(\Omega)>0$ then, a.e. Ω,

$$
H_{Q}^{(A, B)}\left[v ;\left(\omega_{1}, \omega_{2}\right)\right] \gtrsim\left|\omega_{1}\right|\left|\omega_{2}\right|,
$$

for some $\delta=\delta\left(\Delta_{p}, \lambda, \Lambda\right) \in(0,1)$ and $Q=Q_{p, \delta}$ as above.

From L^{p} contractivity to p-ellipticity (a shortcut)

- $\left(e^{-t L}\right)_{t>0}$ is L^{p}-contractive on a Banach space X

From L^{p} contractivity to p-ellipticity (a shortcut)

- $\left(e^{-t L}\right)_{t>0}$ is L^{p}-contractive on a Banach space X

$$
\Longleftrightarrow\left\|e^{-t L} f\right\|_{x} \text { decreases with } t
$$

From L^{p} contractivity to p-ellipticity (a shortcut)

- $\left(e^{-t L}\right)_{t>0}$ is L^{P}-contractive on a Banach space X

$$
\Longleftrightarrow\left\|e^{-t L} f\right\|_{x} \text { decreases with } t
$$

- Consider $X=L^{p}(\Omega, d m)$:

$$
\|g\|_{p}=\left(\int_{\Omega} F_{p}(g) d m\right)^{1 / p}
$$

From L^{p} contractivity to p-ellipticity (a shortcut)

- $\left(e^{-t L}\right)_{t>0}$ is L^{p}-contractive on a Banach space X

$$
\Longleftrightarrow\left\|e^{-t L} f\right\|_{x} \text { decreases with } t
$$

- Consider $X=L^{p}(\Omega, d m)$:

$$
\|g\|_{p}=\left(\int_{\Omega} F_{p}(g) d m\right)^{1 / p}
$$

\ldots and $L u=-\operatorname{div}(A \nabla u)$. Then for $g=e^{-t L_{A}} f$ we expect

$$
-\frac{d}{d t}\left\|e^{-t L_{A}}\right\|_{p}^{p}
$$

From L^{p} contractivity to p-ellipticity (a shortcut)

- $\left(e^{-t L}\right)_{t>0}$ is L^{p}-contractive on a Banach space X

$$
\Longleftrightarrow\left\|e^{-t L} f\right\|_{x} \text { decreases with } t
$$

- Consider $X=L^{p}(\Omega, d m)$:

$$
\|g\|_{p}=\left(\int_{\Omega} F_{p}(g) d m\right)^{1 / p}
$$

\ldots and $L u=-\operatorname{div}(A \nabla u)$. Then for $g=e^{-t L_{A}} f$ we expect

$$
-\frac{d}{d t}\left\|e^{-t L_{A}} f\right\|_{p}^{p}=\Re \int_{\Omega}\left\langle A \nabla g, 2 \nabla\left[\left(\partial_{\bar{z}} F_{p}\right)(g)\right]\right\rangle_{\mathbb{C}^{n}}
$$

From L^{p} contractivity to p-ellipticity (a shortcut)

- $\left(e^{-t L}\right)_{t>0}$ is L^{p}-contractive on a Banach space X

$$
\Longleftrightarrow\left\|e^{-t L} f\right\|_{x} \text { decreases with } t
$$

- Consider $X=L^{p}(\Omega, d m)$:

$$
\|g\|_{p}=\left(\int_{\Omega} F_{p}(g) d m\right)^{1 / p}
$$

\ldots and $L u=-\operatorname{div}(A \nabla u)$. Then for $g=e^{-t L_{A}} f$ we expect

$$
\begin{aligned}
-\frac{d}{d t}\left\|e^{-t L_{A}}\right\|_{p}^{p} & =\Re \int_{\Omega}\left\langle A \nabla g, 2 \nabla\left[\left(\partial_{\bar{z}} F_{p}\right)(g)\right]\right\rangle_{\mathbb{C}^{n}} \\
& \left.=\int_{\Omega} \Re\left\langle A \nabla g,\left[d^{2} F_{p}(g) \otimes I_{n}\right](\nabla g)\right]\right\rangle_{\mathbb{C}^{n}}
\end{aligned}
$$

From L^{p} contractivity to p-ellipticity (a shortcut)

- $\left(e^{-t L}\right)_{t>0}$ is L^{p}-contractive on a Banach space X

$$
\Longleftrightarrow\left\|e^{-t L} f\right\|_{x} \text { decreases with } t
$$

- Consider $X=L^{p}(\Omega, d m)$:

$$
\|g\|_{p}=\left(\int_{\Omega} F_{p}(g) d m\right)^{1 / p}
$$

\ldots and $L u=-\operatorname{div}(A \nabla u)$. Then for $g=e^{-t L_{A}} f$ we expect

$$
\begin{aligned}
-\frac{d}{d t}\left\|e^{-t L_{A}} f\right\|_{p}^{p} & =\Re \int_{\Omega}\left\langle A \nabla g, 2 \nabla\left[\left(\partial_{\bar{z}} F_{p}\right)(g)\right]\right\rangle_{\mathbb{C}^{n}} \\
& \left.=\int_{\Omega} \Re\left\langle A \nabla g,\left[d^{2} F_{p}(g) \otimes I_{n}\right](\nabla g)\right]\right\rangle_{\mathbb{C}^{n}} \\
& =\frac{p}{2} \int_{\Omega}|g|^{p-2} \Re\left\langle A(\operatorname{sign} \bar{g} \cdot \nabla g), \mathcal{J}_{p}(\operatorname{sign} \bar{g} \cdot \nabla g)\right\rangle_{\mathbb{C}^{n}}
\end{aligned}
$$

From L^{p} contractivity to p-ellipticity (a shortcut)

- $\left(e^{-t L}\right)_{t>0}$ is L^{p}-contractive on a Banach space X

$$
\Longleftrightarrow\left\|e^{-t L} f\right\|_{x} \text { decreases with } t
$$

- Consider $X=L^{p}(\Omega, d m)$:

$$
\|g\|_{p}=\left(\int_{\Omega} F_{p}(g) d m\right)^{1 / p}
$$

\ldots and $L u=-\operatorname{div}(A \nabla u)$. Then for $g=e^{-t L_{A}} f$ we expect

$$
\begin{aligned}
-\frac{d}{d t}\left\|e^{-t L_{A}} f\right\|_{p}^{p} & =\Re \int_{\Omega}\left\langle A \nabla g, 2 \nabla\left[\left(\partial_{\bar{z}} F_{p}\right)(g)\right]\right\rangle_{\mathbb{C}^{n}} \\
& \left.=\int_{\Omega} \Re\left\langle A \nabla g,\left[d^{2} F_{p}(g) \otimes I_{n}\right](\nabla g)\right]\right\rangle_{\mathbb{C}^{n}} \\
& =\frac{p}{2} \int_{\Omega}|g|^{p-2} \Re\left\langle A(\operatorname{sign} \bar{g} \cdot \nabla g), \mathcal{J}_{p}(\operatorname{sign} \bar{g} \cdot \nabla g)\right\rangle_{\mathbb{C}^{n}}
\end{aligned}
$$

Exact proof based on Nittka (2012).

Example: Spectral multipliers for generators of symmetric contraction semigroups

Origin of the theory: Stein 1970
$(\Omega, \nu): \sigma$-finite measure space
\mathcal{A} : a nonnegative self-adjoint operator on $L^{2}(\Omega, \nu)$.
For $t>0$ define

$$
P_{t}:=e^{-t \mathcal{A}}
$$

We assume that $\left(P_{t}\right)_{t>0}$ is symmetric contraction semigroup:
for all $t>0$ and all $p \in[1, \infty]$,

$$
\left\|P_{t} f\right\|_{p} \leqslant\|f\|_{p} \quad \forall f \in L^{p}(\Omega, \nu) \cap L^{2}(\Omega, \nu)
$$

E : the spectral decomposition of \mathcal{A}, i.e.

$$
\mathcal{A}=\int_{0}^{\infty} \lambda d E(\lambda)
$$

E : the spectral decomposition of \mathcal{A}, i.e.

$$
\mathcal{A}=\int_{0}^{\infty} \lambda d E(\lambda) .
$$

If $m \in L^{\infty}\left(\mathbb{R}_{+}\right)$then the operator

$$
m(\mathcal{A})=\int_{0}^{\infty} m(\lambda) d E(\lambda)
$$

is bounded on $L^{2}(\Omega, \nu)$.
E : the spectral decomposition of \mathcal{A}, i.e.

$$
\mathcal{A}=\int_{0}^{\infty} \lambda d E(\lambda) .
$$

If $m \in L^{\infty}\left(\mathbb{R}_{+}\right)$then the operator

$$
m(\mathcal{A})=\int_{0}^{\infty} m(\lambda) d E(\lambda)
$$

is bounded on $L^{2}(\Omega, \nu)$.
What about $p \neq 2$?
E : the spectral decomposition of \mathcal{A}, i.e.

$$
\mathcal{A}=\int_{0}^{\infty} \lambda d E(\lambda) .
$$

If $m \in L^{\infty}\left(\mathbb{R}_{+}\right)$then the operator

$$
m(\mathcal{A})=\int_{0}^{\infty} m(\lambda) d E(\lambda)
$$

is bounded on $L^{2}(\Omega, \nu)$.

What about $p \neq 2$?
L^{p} spectral multipliers for \mathcal{A}

$$
m \in \mathcal{M}_{p}(\mathcal{A}) \quad \stackrel{\text { def }}{\Longleftrightarrow} \quad m(\mathcal{A}) \in \mathcal{B}\left(L^{p}(\Omega, \nu)\right)
$$

E : the spectral decomposition of \mathcal{A}, i.e.

$$
\mathcal{A}=\int_{0}^{\infty} \lambda d E(\lambda) .
$$

If $m \in L^{\infty}\left(\mathbb{R}_{+}\right)$then the operator

$$
m(\mathcal{A})=\int_{0}^{\infty} m(\lambda) d E(\lambda)
$$

is bounded on $L^{2}(\Omega, \nu)$.
What about $p \neq 2$?
L^{p} spectral multipliers for \mathcal{A}

$$
m \in \mathcal{M}_{p}(\mathcal{A}) \quad \stackrel{\text { def }}{\Longleftrightarrow} \quad m(\mathcal{A}) \in \mathcal{B}\left(L^{p}(\Omega, \nu)\right)
$$

C. Fefferman (1971): for $n>1$ we have

$$
\chi_{(-1,1)} \in \mathcal{M}_{p}\left(-\Delta_{n}\right) \quad \Longleftrightarrow \quad p=2
$$

Multiplier theorem (Carbonaro-D. 2012)

QUESTION: the smallest angle ϑ for which there is Hörmander-type holomorphic functional calculus on L^{p} in the sector \mathbf{S}_{ϑ} for all generators of symmetric contraction semigroups?

Multiplier theorem (Carbonaro-D. 2012)

QUESTION: the smallest angle ϑ for which there is Hörmander-type holomorphic functional calculus on L^{p} in the sector \mathbf{S}_{ϑ} for all generators of symmetric contraction semigroups?

Theorem

The optimal angle is $\vartheta=\arcsin |1-2 / p|$.

Multiplier theorem (Carbonaro-D. 2012)

QUESTION: the smallest angle ϑ for which there is Hörmander-type holomorphic functional calculus on L^{p} in the sector \mathbf{S}_{ϑ} for all generators of symmetric contraction semigroups?

Theorem

The optimal angle is $\vartheta=\arcsin |1-2 / p|$.

New approach: combination of heat flow and Bellman functions.
Reduces the proof, via bilinear embedding with complex time, to
finding the best $\phi=\pi / 2-\vartheta$ for which $e^{i \phi} \mid$ is p-elliptic.

Multiplier theorem (Carbonaro-D. 2012)

QUESTION: the smallest angle ϑ for which there is Hörmander-type holomorphic functional calculus on L^{p} in the sector \mathbf{S}_{ϑ} for all generators of symmetric contraction semigroups?

Theorem

The optimal angle is $\vartheta=\arcsin |1-2 / p|$.

New approach: combination of heat flow and Bellman functions.
Reduces the proof, via bilinear embedding with complex time, to
finding the best $\phi=\pi / 2-\vartheta$ for which $e^{i \phi} \mid$ is p-elliptic.

$$
\Delta_{p}\left(e^{i \phi} I\right)=?
$$

Calculation of $\Delta_{p}\left(e^{i \phi} /\right)$

$$
\Delta_{p}\left(e^{i \phi} I\right)=\min _{|\xi|=1} \Re\left\langle e^{i \phi} \xi, \xi+\right| 1-2 / p|\bar{\xi}\rangle_{\mathbb{C}^{n}}
$$

Calculation of $\Delta_{p}\left(e^{i \phi} /\right)$

$$
\Delta_{p}\left(e^{i \phi} I\right)=\min _{|\xi|=1}^{\Re\langle\underbrace{\Re \phi}_{\cos \phi}} \xi, \xi+|1-2 / p| \bar{\xi}\rangle_{\mathbb{C}^{n}}
$$

Calculation of $\Delta_{p}\left(e^{i \phi} /\right)$

$$
\Delta_{p}\left(e^{i \phi} I\right)=\min _{|\xi|=1} \underbrace{\Re\left\langle e^{i \phi}\right.}_{\cos \phi} \underbrace{\xi, \xi}_{1}+|1-2 / p| \bar{\xi}\rangle_{\mathbb{C}^{n}}
$$

Calculation of $\Delta_{p}\left(e^{i \phi} /\right)$

$$
\begin{aligned}
\Delta_{p}\left(e^{i \phi} \mid\right) & =\min _{|\xi|=1} \underbrace{\Re e^{i \phi}}_{\cos \phi} \underbrace{\xi, \xi}_{1}+|1-2 / p| \bar{\xi}\rangle_{C^{n}} \\
& =\cos \phi+|1-2 / p| \min _{|\xi|=1} \Re\left[e^{i \phi}\langle\xi, \bar{\xi}\rangle_{\mathbb{C}^{n}}\right]
\end{aligned}
$$

Calculation of $\Delta_{p}\left(e^{i \phi} /\right)$

$$
\begin{aligned}
\Delta_{p}\left(e^{i \phi} I\right) & =\min _{|\xi|=1}^{\Re\left\langle e^{i \phi}\right.} \underbrace{\xi, \xi}_{\cos \phi}+|1-2 / p| \bar{\xi}\rangle_{\mathbb{C}^{n}} \\
& =\cos \phi+|1-2 / p| \underbrace{\min _{|\xi|=1}^{\mid \Re\left[e^{i \phi}\langle\xi, \bar{\xi}\rangle_{\mathbb{C}^{n}}\right]}}_{-1}
\end{aligned}
$$

Calculation of $\Delta_{p}\left(e^{i \phi} /\right)$

$$
\begin{aligned}
\Delta_{p}\left(e^{i \phi} l\right) & =\min _{|\xi|=1}^{\Re} \underbrace{\Re\left\langle e^{i \phi}\right.}_{\cos \phi} \underbrace{\xi, \xi}_{1}+|1-2 / p| \bar{\xi}\rangle_{\mathbb{C}^{n}} \\
& =\cos \phi+|1-2 / p| \underbrace{\min _{|\xi|=1} \Re\left[e^{i \phi}\langle\xi, \bar{\xi}\rangle_{\mathbb{C}^{n}}\right]}_{-1} \\
& =\cos \phi-|1-2 / p| .
\end{aligned}
$$

Trilinear embedding for complex elliptic operators

Trilinear embedding for complex elliptic operators

Theorem (Carbonaro - D. - Kovač - Škreb 2020)

Let $p, q, r \in(1, \infty)$ satisfy $1 / p+1 / q+1 / r=1$. Assume that the matrices $A, B, C: \Omega^{n} \rightarrow \mathbb{C}$ are $\max \{p, q, r\}$-elliptic. Let L_{A} be the elliptic operator $u \mapsto-\operatorname{div}(A \nabla u)$ subject to either Dirichlet, Neumann or mixed boundary conditions on Ω. Then

$$
\int_{0}^{\infty} \int_{\Omega}\left|\nabla e^{-t L_{A}} f\right|\left|\nabla e^{-t L_{B}} g\right|\left\|e^{-t L_{C}} h \mid d x d t \lesssim\right\| f\left\|_{p}\right\| g\left\|_{q}\right\| h \|_{r} .
$$

When $\Omega=\mathbb{R}^{n}$, the theorem holds under weaker conditions, i.e.:

- A is p-elliptic and $(1+p / q)$-elliptic
- B is q-elliptic and $(1+q / p)$-elliptic
- C is r-elliptic.

Trilinear embedding for complex elliptic operators

Comments

- Trilinear embedding \Rightarrow bilinear embedding.

Trilinear embedding for complex elliptic operators

Comments

- Trilinear embedding \Rightarrow bilinear embedding.
- No more symmetry with respect to the conjugation of p.

Trilinear embedding for complex elliptic operators

Comments

- Trilinear embedding \Rightarrow bilinear embedding.
- No more symmetry with respect to the conjugation of p.
- Proof: heat flow + Bellman function. We need three variables.

The Kovač-Škreb function (2018)

The Kovač-Škreb function (2018)

Write $q / r=1+2 \varepsilon$ and define

$$
\begin{aligned}
& \mathfrak{X}(u, v, w):= \\
& \begin{cases}D|u|^{p}+|v|^{q}+E|w|^{r} ; & |u|^{p} \leqslant|w|^{r} \leqslant|v|^{q}, \\
\left(D-\frac{E}{p-1}\right)|u|^{p}+|v|^{q}+\frac{E p}{p-1}|u||w|^{r-r / p ;} & |w|^{r} \leqslant|u|^{p} \leqslant|v|^{q}, \\
\left(D-\frac{E+1}{p-1}\right)|u|^{p}+\frac{p}{p-1}|u||v|^{q-q / p}+\frac{E p}{p-1}|u||w|^{r-r / p ;} ; & |w|^{r} \leqslant|v|^{q} \leqslant|u|^{p}, \\
\left(D-\frac{E+1}{p-1}\right)|u|^{p}+\frac{q}{2}|u||v|^{2}|w|^{1-r / q}+(E-\varepsilon) \frac{p}{p-1}|u||w|^{r-r / p ;} ; & |v|^{q} \leqslant|w|^{r} \leqslant|u|^{p}, \\
\left(D-\frac{q}{2 p}\right)|u|^{p}+\frac{q^{2}}{2 p(q-2)}|u|^{p-2 p / q}|v|^{2}+\frac{\varepsilon q}{q-2}|v|^{2}|w|^{r-2 r / q} ; & |v|^{q} \leqslant|u|^{p} \leqslant|w|^{r}, \\
+(E-\varepsilon)|w|^{r} ; & |u|^{p} \leqslant|v|^{q} \leqslant|w|^{r} .\end{cases}
\end{aligned}
$$

Generalized convexity of the Kovač-Škreb function

Theorem (Carbonaro - D. - Kovač - Škreb 2020)

Under the conditions on p, q, r, A, B, C, specified in the trilinear embedding theorem, there exist $D, E>0$ such that \mathfrak{X} satisfies:
a) for all $u, v, w \in \mathbb{C}$,

$$
\mathfrak{X}(u, v, w) \lesssim|u|^{p}+|v|^{q}+|w|^{r} ;
$$

b) for almost every $x \in \Omega$,

$$
H_{\mathfrak{X}}^{(A, B, C)(x)}[(u, v, w) ;(\zeta, \eta, \xi)] \gtrsim|w||\zeta||\eta|
$$

for all $(u, v, w) \in \mathbb{C}^{3} \backslash \Upsilon$ and $(\zeta, \eta, \xi) \in\left(\mathbb{C}^{d}\right)^{3}$.
The implied constants depend on p, q, r and $*$-ellipticity constants of A, B, C alluded to in the theorem's assumptions.

The Kato-Ponce inequality for complex elliptic operators

Theorem (Carbonaro - D. - Kovač - Škreb 2021)

Let $p_{1}, q_{1}, p_{2}, q_{2}, \wp \in(1, \infty)$ be such that

$$
\frac{1}{p_{1}}+\frac{1}{q_{1}}=\frac{1}{p_{2}}+\frac{1}{q_{2}}=\frac{1}{\wp} .
$$

If A is $\max \left\{p_{1}, p_{2}, q_{1}, q_{2}, \wp^{\prime}\right\}$-elliptic and $\beta \in(0,1 / \wp)$, then

$$
\left\|L_{A}^{\beta}(f g)\right\|_{\wp} \lesssim\left\|L_{A}^{\beta} f\right\|_{p_{1}}\|g\|_{q_{1}}+\|f\|_{p_{2}}\left\|L_{A}^{\beta} g\right\|_{q_{2}} .
$$

The Kato-Ponce inequality for complex elliptic operators

Theorem (Carbonaro - D. - Kovač - Škreb 2021)

Let $p_{1}, q_{1}, p_{2}, q_{2}, \wp \in(1, \infty)$ be such that

$$
\frac{1}{p_{1}}+\frac{1}{q_{1}}=\frac{1}{p_{2}}+\frac{1}{q_{2}}=\frac{1}{\wp} .
$$

If A is $\max \left\{p_{1}, p_{2}, q_{1}, q_{2}, \wp^{\prime}\right\}$-elliptic and $\beta \in(0,1 / \wp)$, then

$$
\left\|L_{A}^{\beta}(f g)\right\|_{\wp} \lesssim\left\|L_{A}^{\beta} f\right\|_{p_{1}}\|g\|_{q_{1}}+\|f\|_{p_{2}}\left\|L_{A}^{\beta} g\right\|_{q_{2}} .
$$

- Interpretation of L_{A}^{β} : functional calculus for sectorial operators.

The Kato-Ponce inequality for complex elliptic operators

Theorem (Carbonaro - D. - Kovač - Škreb 2021)

Let $p_{1}, q_{1}, p_{2}, q_{2}, \wp \in(1, \infty)$ be such that

$$
\frac{1}{p_{1}}+\frac{1}{q_{1}}=\frac{1}{p_{2}}+\frac{1}{q_{2}}=\frac{1}{\wp} .
$$

If A is $\max \left\{p_{1}, p_{2}, q_{1}, q_{2}, \wp^{\prime}\right\}$-elliptic and $\beta \in(0,1 / \wp)$, then

$$
\left\|L_{A}^{\beta}(f g)\right\|_{\wp} \lesssim\left\|L_{A}^{\beta} f\right\|_{p_{1}}\|g\|_{q_{1}}+\|f\|_{p_{2}}\left\|L_{A}^{\beta} g\right\|_{q_{2}} .
$$

- Interpretation of L_{A}^{β} : functional calculus for sectorial operators.
- We do not include the case $p_{2}, q_{1}=\infty$.

The Kato-Ponce inequality for complex elliptic operators

Theorem (Carbonaro - D. - Kovač - Škreb 2021)

Let $p_{1}, q_{1}, p_{2}, q_{2}, \wp \in(1, \infty)$ be such that

$$
\frac{1}{p_{1}}+\frac{1}{q_{1}}=\frac{1}{p_{2}}+\frac{1}{q_{2}}=\frac{1}{\wp} .
$$

If A is $\max \left\{p_{1}, p_{2}, q_{1}, q_{2}, \wp^{\prime}\right\}$-elliptic and $\beta \in(0,1 / \wp)$, then

$$
\left\|L_{A}^{\beta}(f g)\right\|_{\wp} \lesssim\left\|L_{A}^{\beta} f\right\|_{p_{1}}\|g\|_{q_{1}}+\|f\|_{p_{2}}\left\|L_{A}^{\beta} g\right\|_{q_{2}} .
$$

- Interpretation of L_{A}^{β} : functional calculus for sectorial operators.
- We do not include the case $p_{2}, q_{1}=\infty$.
- A new approach to Kato-Ponce inequalities.

Elements of the proof of the Kato-Ponce inequality

Elements of the proof:

- Dualization: for $1 / \wp+1 / r=1$ it is enough to prove

$$
\left|\int_{\Omega} f g \overline{L_{A^{*}}^{\beta} h} \mathrm{~d} x\right| \lesssim\left(\left\|L_{A}^{\beta} f\right\|_{p_{1}}\|g\|_{q_{1}}+\|f\|_{p_{2}}\left\|L_{A}^{\beta} g\right\|_{q_{2}}\right)\|h\|_{r} .
$$

- Splitting the left-hand side by Calderón reproducing formula:
$\int_{\Omega} f g \overline{L_{A^{*}}^{\beta} h} \mathrm{~d} x$

$$
=-\int_{0}^{\infty} \int_{\Omega} \frac{\mathrm{d}}{\mathrm{~d} t}\left(\phi_{\alpha}\left(t L_{A}\right) f \cdot \phi_{\alpha}\left(t L_{A}\right) g \cdot \overline{\phi_{\alpha}\left(t L_{A^{*}}\right) L_{A^{*}}^{\beta} h}\right) d x d t
$$

where $\psi_{\alpha}(z)=z^{\alpha} e^{-z}$ and

$$
\phi_{\alpha}(z)=\frac{1}{\Gamma(\alpha)} \int_{1}^{\infty} \psi_{\alpha}(s z) \frac{d s}{s} .
$$

Elements of the proof of the Kato-Ponce inequality

- By
(i) differentiating the right-hand side above,
(ii) splitting/decomposing further,
(iii) integrating by parts (definition of L_{A})
we eventually arrive at the crucial term to be estimated:

$$
\begin{aligned}
J_{3}^{\prime}= & \int_{0}^{\infty} \\
& \int_{\Omega} \overline{\psi_{\alpha-1}\left(t L_{A^{*}}\right) L_{A^{*}}^{\beta} h} \\
& \int_{t}^{\infty}\left\langle\left(A+A^{T}\right) \nabla L_{A} \psi_{\alpha-1}\left(s L_{A}\right) f, \nabla \overline{\phi_{\alpha}\left(s L_{A}\right) g}\right\rangle \mathrm{d} s \mathrm{~d} x \mathrm{~d} t
\end{aligned}
$$

Elements of the proof of the Kato-Ponce inequality

- By subordination to imaginary powers of L_{A} (via the inversion formula for the Mellin transform) we end up estimating

$$
\begin{aligned}
& \int_{1}^{\infty} s^{\beta-1} \\
& \left(\int_{0}^{\infty} \int_{\Omega}\left|\nabla e^{-s t L_{A}} L_{A}^{i u_{1}} L_{A}^{\beta} f\right|\left|\nabla e^{-s t L_{A}} L_{A}^{i u_{2}} g\right|\left|e^{-t L_{A^{*}}} L_{A^{*}}^{i u_{3}} h\right| \mathrm{d} x \mathrm{~d} t\right) \mathrm{d} s .
\end{aligned}
$$

for $u_{1,2,3} \in \mathbb{R}$.

- Thus the proof will be finished once we obtain
(i) trilinear embedding with adequate control of the embedding constants for $(s A, s B, C)$ in terms of $s>0$, and
(ii) boundedness of imaginary powers of L_{A}.

Elements of the proof of the Kato-Ponce inequality

- By subordination to imaginary powers of L_{A} (via the inversion formula for the Mellin transform) we end up estimating

$$
\begin{aligned}
& \int_{1}^{\infty} s^{\beta-1} \\
& \left(\int_{0}^{\infty} \int_{\Omega}\left|\nabla e^{-s t L_{A}} L_{A}^{i u_{1}} L_{A}^{\beta} f\right|\left|\nabla e^{-s t L_{A}} L_{A}^{i u_{2}} g\right|\left|e^{-t L_{A^{*}}} L_{A^{*}}^{i u_{3}} h\right| \mathrm{d} x \mathrm{~d} t\right) \mathrm{d} s .
\end{aligned}
$$

for $u_{1,2,3} \in \mathbb{R}$.

- Thus the proof will be finished once we obtain
(i) trilinear embedding with adequate control of the embedding constants for $(s A, s B, C)$ in terms of $s>0$, and
(ii) boundedness of imaginary powers of L_{A}.
- Indeed we have both.

Elements of the proof of the Kato-Ponce inequality

- By subordination to imaginary powers of L_{A} (via the inversion formula for the Mellin transform) we end up estimating

$$
\begin{aligned}
& \int_{1}^{\infty} s^{\beta-1} \\
& \left(\int_{0}^{\infty} \int_{\Omega}\left|\nabla e^{-s t L_{A}} L_{A}^{i u_{1}} L_{A}^{\beta} f\right|\left|\nabla e^{-s t L_{A}} L_{A}^{i u_{2}} g\right|\left|e^{-t L_{A^{*}}} L_{A^{*}}^{i u_{3}} h\right| \mathrm{d} x \mathrm{~d} t\right) \mathrm{d} s
\end{aligned}
$$

for $u_{1,2,3} \in \mathbb{R}$.

- Thus the proof will be finished once we obtain
(i) trilinear embedding with adequate control of the embedding constants for $(s A, s B, C)$ in terms of $s>0$, and
(ii) boundedness of imaginary powers of L_{A}.
- Indeed we have both.

We have been profusely using the analiticity of $e^{-t L_{A}}$ and holomorphic functional calculus for L_{A}.

Thank you for your attention

